B Decays with Tau Leptons in the Final State

Michael Mazur Universität Freiburg Representing

™ and © Nelvana, All Rights Reserved

Outline

- Motivation why study τ final states?
- $B \rightarrow \tau v$
- $B \rightarrow D\tau v$ and $D^{(*)}\tau v$
- $B \rightarrow l \tau$
- $B \rightarrow K \tau \mu$
- Summary and Outlook

Motivation

- Learn about SM
 - $f_{\rm B}$, form factors test QCD calculations
- Many models of physics beyond the SM predict enhanced 3rd generation couplings
 - Higgs bosons: $m_{\tau} >> m_{e}$, m_{μ}
 - SUSY with LFV in slepton sector
 - GUTs

Experimental Techniques: B Tagging

τ decays, 1-3 v in final state – challenging!

- Tag $B_{reco} \rightarrow D^{(*)} n_1 \pi n_2 \pi^0 n_3 K n_4 K_s$
 - Study recoiling B meson
 - Low efficiency (~3x10⁻³)
 - Full reconstruction: high purity sample with kinematic constraints
- $\mathbf{e}^{\mathbf{e}}$ $\mathbf{D}^{(*)}$ $\mathbf{D}^{(*)}$ $\mathbf{D}^{(*)}$ \mathbf{B}_{recoi}

- Tag $B_{SL} \rightarrow D^{(*)} lv$
 - Partial reconstruction: higher efficiency, lower purity
 - Complementary sample

- Motivation why study τ final states?
- *B*→τν
- $B \rightarrow D\tau v$ and $D^{(*)}\tau v$
- $B \rightarrow l \tau$
- $B \rightarrow K \tau \mu$
- Summary and Outlook

$$B \rightarrow \tau \nu$$

$$B^{+} \swarrow M^{+} H^{+} \checkmark V$$

$$B^{+} \swarrow M^{+} H^{+} \checkmark V$$

$$V_{\nu_{Q}}$$

$$\mathcal{B}(B^{-} \rightarrow \ell^{-} \bar{\nu}) = \frac{G_{F}^{2} m_{B}}{8\pi} m_{l}^{2} \left(1 - \frac{m_{l}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2} |V_{ub}|^{2} \tau_{B}$$

- Purely leptonic decay helicity suppressed in SM
 - $B \rightarrow \tau v$ is most accessible channel
 - Can use $B \rightarrow \tau v$ to measure $f_{\rm B}$
 - Or, assuming $f_{\rm B}$ is known, can use $B \rightarrow \tau v$ to constrain charged Higgs:

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B}{8\pi} m_l^2 \left(1 - \frac{m_l^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B \times \left(1 - \tan^2 \beta \frac{m_B^2 \pm}{m_H^2 \pm} \right)^2$$

$B \rightarrow \tau v$: Event Selection

- Use both hadronic and semileptonic tags
- Reconstruct τ as $\tau \rightarrow e \nu \nu$, $\tau \rightarrow \mu \nu \nu$, $\tau \rightarrow \pi \nu$, $\tau \rightarrow \rho \nu$
- Candidate selection optimized based on
 - Momentum of τ daughter
 - Event shape requirements for continuum rejection
 - Hermeticity requirements (common to all recoil analyses)
 - Expect zero remaining charged tracks, ${\rm K}_{\rm s}$ in the event
 - Expect small E_{extra}, sum of energies of remaining neutrals, used as signal discriminant

$B \rightarrow \tau v$: Background Estimation

· Use sidebands in data to estimate background yield

M. Mazur ---- B Decays with Tau Leptons

$B \rightarrow \tau v$: Hadronic Tag Signal Yields

$B \rightarrow \tau v$: SL Tag Signal Yields

$B \rightarrow \tau v$: SL Tag Branching Fractions

$B \rightarrow \tau v$: Systematic Uncertainties

- Many systematics studied using double-tag samples
 - Both B mesons reconstructed in a tag mode
- E_{extra} modeling
- Detector efficiency

Source of systematics	e^+	μ^+	π^+	$\pi^+ \pi^0$	Total
MC statistics	3.1	0.6	1.5	2.6	4.3
Particle Identification	1.5	1.3	0.2	0.2	2.0
π^0				1.4	1.4
Tracking	3.7	0.4	0.1	1.6	5.8
E_{extra}	4.7	0.6	0.9	2.6	8.8
Signal B					11.6
Tag B					3
Total					12

Hadronic tag analysis

$B \rightarrow \tau v$: Results

- SM using $|V_{\rm ub}| = (4.43 \pm 0.54) \times 10^{-3}$, $f_{\rm B} = 189 \pm 27 \text{ MeV}$ $\mathcal{B}(B^+ \to \tau^+ \nu_\tau) = (1.2 \pm 0.4) \times 10^{-4}$
- BaBar results:
 - Hadronic $\mathcal{B}(B^+ \to \tau^+ \nu) = (1.8^{+0.9}_{-0.8} \pm 0.4 \pm 0.2) \times 10^{-4}$
 - SL $\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = (1.8 \pm 0.8 \pm 0.1) \times 10^{-4}$
 - Average $\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = (1.8 \pm 0.6) \times 10^{-4}$ 459M BB, in preparation Excludes zero at 3.2 σ
- Belle results:

449M BB, PRL99, 251802 (2006)

- Hadronic $\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = (1.79^{+0.56+0.46}_{-0.49-0.51}) \times 10^{-4}$
- SL $\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = (1.65^{+0.38+0.35}_{-0.37-0.37}) \times 10^{-4}$

M. Mazur --- B Decays with Tau Leptons

- Motivation why study τ final states?
- $B \rightarrow \tau v$
- $B \rightarrow D\tau v$ and $D^{(*)}\tau v$
- $B \rightarrow l \tau$
- $B \rightarrow K \tau \mu$
- Summary and Outlook

- No helicity suppression
- Light lepton modes are very well studied
 - QCD effects under control, very clean probe of NP
- 3-body decay, study differential distributions as well as BF
 - q^2 , D^* polarization, τ polarization (daughter momentum)

$B \rightarrow D^{(*)} \tau v$: Event Selection

- Hadronic B_{reco} tag
- Reconstruct τ as $\tau \rightarrow l\nu\nu$
- D^0 , D^+ , D^{*0} , D^{*+} in 12 hadronic final states
- Charge correlation between B_{reco}, D^(*), l
- Reject combinatorial BG:
 - $q^2 > 4 \text{ GeV}^2$
 - $p_{\rm miss}$ > 200 MeV
 - No extra tracks, E_{extra} < 150-300 MeV

$B \rightarrow D^{(*)} \tau v$: Backgrounds

- Most background $B \rightarrow Dlv$, $B \rightarrow D^*lv$
- Use m_{miss}^2 to discriminate signal from BG
 - Light lepton BG has $1 v \Rightarrow m_{\text{miss}}^2 \approx 0$
 - Signal events have 3 v \Rightarrow very large m^2_{miss}

- B→D^{**}lv BG constrained using control samples
 - Add a π^0 to signal reconstruction
 - Reduce sensitivity to details of D^{**} model (D_1 , D_2^* , D_0^* , D_1^* , non-resonant)

$B \rightarrow D^{(*)} \tau v: \text{Signal Fit}$ • Fit m_{miss}^2 , p_l^*

- Simultaneous fit to four вс signal channels, 4 D^{**} control samples
- Constraints relate crossfeed
 yields among all channels
- Measure both signal and light lepton modes
 - Normalize result to light leptons

$B \rightarrow D^{(*)} \tau \nu$: p_{μ}^{*} Projections

$B \rightarrow D^{(*)} \tau \nu$: Results

Standard Model

Decay Mode \mathcal{B} (%)Chen and Geng, JHEP 10 053 (2006) $\overline{B}^0 \rightarrow D^- \tau^- \overline{\nu}_{\tau}$ 0.69 ± 0.04 $\overline{B}^0 \rightarrow D^{*-} \tau^- \overline{\nu}_{\tau}$ 1.41 ± 0.07

BaBar

3.6.1	1	12	= 232M	BB, PRL	. 100 02180	1 (2008)
Mod	le	B		·		
		[%]	_			
B^-	$ ightarrow D^0 au^- \overline{ u}_ au$	$0.67 \pm 0.37 \pm 0.11 \pm 0.07$				
B^-	$\rightarrow D^{*0} \tau^- \overline{\nu}_{\tau}$	$2.25 \pm 0.48 \pm 0.22 \pm 0.17$				
$\overline{B}{}^{0}$	$\rightarrow D^+ \tau^- \overline{\nu}_{\tau}$	$1.04 \pm 0.35 \pm 0.15 \pm 0.10$				
$\overline{B}{}^{0}$	$\rightarrow D^{*+} \tau^- \overline{\nu}_{\tau}$	$1.11 \pm 0.51 \pm 0.04 \pm 0.04$,		
B	$\rightarrow D \tau^- \overline{\nu}_{\tau}$	$0.86 \pm 0.24 \pm 0.11 \pm 0.06$	3.6σ			
B	$\rightarrow D^* \tau^- \overline{\nu}_{\tau}$	$1.62 \pm 0.31 \pm 0.10 \pm 0.05$	6.2σ			

535M BB, PRL 99 191807 (2007)

Belle

$$\mathcal{B}(\overline{B}{}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}) = (2.02^{+0.40}_{-0.37} \pm 0.37)\%$$

22 Sep 2008

M. Mazur --- B Decays with Tau Leptons

- Motivation why study τ final states?
- $B \rightarrow \tau v$
- $B \rightarrow D\tau v$ and $D^{(*)}\tau v$
- $B \rightarrow l \tau$
- $B \rightarrow K \tau \mu$
- Summary and Outlook

$B \rightarrow l\tau$

- Decays $B \rightarrow e\tau$, $B \rightarrow \mu\tau$ violate lepton flavor
 - Allowed (but very small) in SM via neutrino mixing:

- Can be enhanced in SUSY by LFV in slepton sector

M. Mazur --- B Decays with Tau Leptons

$B \rightarrow l\tau$: Results

• Look for $l\tau$ on recoil of hadronic tag

- Two body decay: p(l) peaks at 2.3 GeV/c

- Motivation why study τ final states?
- $B \rightarrow \tau v$
- $B \rightarrow D\tau v$ and $D^{(*)}\tau v$
- $B \rightarrow l \tau$
- В→Ктµ
- Summary and Outlook

 $B \rightarrow K \tau \mu$

- In GUT, natural FCNC Yukawa coupling between generations $i, j \sim \sqrt{(m_i m_j)}$
 - Effect largest in $3\rightarrow 2$ transitions: $b\rightarrow s, \tau \rightarrow \mu$
- Limits on these models from $B \rightarrow Kll'$, $B_s \rightarrow \mu\mu$
 - Kτμ would test different couplings, naturalness

B→*K*τµ: Results

- Reconstruct everything but τ : hadronic B_{tag} + K μ
 - Constrained kinematics: measure τ mass
 - $B \rightarrow D^{(*)} \mu \nu$ ($D^0 \rightarrow K \pi$) control sample: check technique, normalize signal

Summary and Outlook

- $B \rightarrow \tau v$ and $B \rightarrow D \tau v$ already restrict Higgs parameter space in 2HDM, MFV MSSM
 - $D^* \tau v$ not yet included
 - Updates to final data sample expected to improve these limits

• New limits on LFV modes further restrict NP models

Backup

$B \rightarrow \tau v$: Hadronic Tags

On-resonance Data
 total background prediction
 combinatorial background
 Signal MC (scaled to BF=3x10⁻³)

M. Mazur --- B Decays with Tau Leptons

$B \rightarrow \tau v$: SL Systematic Uncertainties

Source	Applicable Mode(s)	Fractional Uncertainty (%)
B Counting	All	1.1
Tag efficiency	All	2.4
E_{extra}	All	2.1
π^0 Reconstruction	$\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$	3.0
Tracking Efficiency	$\tau^+ \rightarrow e^+ \nu_e \overline{\nu}_{\tau}$	0.36
	$\tau^+ \to \mu^+ \nu_\mu \overline{\nu}_\tau$	0.36
	$\tau^+ \to \pi^+ \overline{\nu}_{\tau}$	0.36
	$\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$	0.36
Particle Identification	$\tau^+ \to e^+ \nu_e \overline{\nu}_{\tau}$	2.5
	$\tau^+ \to \mu^+ \nu_\mu \overline{\nu}_\tau$	3.1
	$\tau^+ \to \pi^+ \overline{\nu}_{\tau}$	0.8
	$\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$	1.5

<u> $B \rightarrow D^{(*)} \tau v$: Systematic</u> Uncertainties

Source	Fractional error (%)					
	$D^0 \tau \nu$	$D^{*0}\tau\nu$	$D^+ \tau \nu$	$D^{*+}\tau\nu$	$D\tau\nu$	$D^* \tau \nu$
MC stat. (PDF shape)	11.5	8.4	4.5	1.8	6.9	4.7
MC stat. (constraints)	4.2	1.9	6.1	1.3	3.6	1.4
Comb. BG modeling	7.5	4.1	11.5	2.6	9.1	2.9
D ^{**} modeling	5.7	0.5	1.6	0.2	3.0	0.4
$\mathcal{B} \to D^*$ form factors	1.9	0.7	0.8	0.2	1.4	0.4
$B \rightarrow D$ form factors	0.2	0.7	0.6	0.2	0.3	0.4
π^0 crossfeed constraints	0.5	1.1	0.5	0.9	0.5	1.0
D^{**} feed-down	0.4	0.1	0.1	0.3	0.2	0.2
$D^{**}\tau^-\overline{\nu}_{\tau}$ abundance	0.4	1.3	0.3	0.2	0.3	0.8
$m_{\rm miss}^2$ tail modeling	1.5	0.5	1.2	0.4	1.6	0.1
MC stat. (efficiency)	1.23	1.09	1.47	1.05	0.96	0.76
Bremsstrahlung/FSR	0.55	0.51	0.26	0.42	0.40	0.47
Tracking ε	0.01	0.02	0.002	0.03	0.01	0.02
$e \text{ PID } \varepsilon$	0.53	0.54	0.60	0.57	0.61	0.56
$\mu \text{ PID } \epsilon$	0.53	0.60	0.66	0.58	0.59	0.59
$K \text{ PID } \varepsilon$	0.15	0.05	0.22	0.03	0.18	0.04
$\pi \text{ PID } \epsilon$	0.07	0.07	0.17	0.04	0.12	0.05
$K_s^0 \varepsilon$	0.07	0.00	0.07	0.08	0.07	0.04
Neutral (π^0 and γ) ε	0.01	0.04	0.02	0.05	0.02	0.04
Daughter \mathcal{B} 's	0.07	0.27	0.04	0.08	0.08	0.30
$\mathcal{B}(\tau^- \rightarrow \ell^- \overline{\nu}_\ell \nu_\tau)$	0.2	0.2	0.2	0.2	0.2	0.2
Total additive	15.6	9.7	14.0	3.6	12.5	5.8
Total multiplicative	1.60	1.49	1.77	1.42	1.38	1.26
Total	15.6	9.9	14.0	3.9	12.5	6.0
$\mathcal{B}(B o D^{(*)} \ell^- \overline{\nu}_\ell)$	10.2	7.7	9.4	3.7	6.8	3.4

Additive systematics studied with ensembles of signal fits

Multiplicative systematics mostly cancel due to relative normalization