

SEARCH FOR SECOND-CLASS CURRENTS IN THE DECAY $au^- o \pi^- \omega u_ au$

The BABAR Collaboration

Tim West The University of Manchester

Tau08 Workshop

23 September 2008

TALK OVERVIEW

- The BABAR detector
- Second-class currents
- Previous results
- Data samples
- Analysis method
- Event selection
- Background events
 - → Non-resonant background events
 - → Resonant $e^+e^- \rightarrow q\overline{q}$ background events
 - → Resonant $\tau^+ \tau^-$ background events
- ➡ Efficiency
- ➡ Result and final fit
- Systematic uncertainties
- Results and conclusions

THE BABAR DETECTOR

INTRODUCTION

Figure 1: Schematic view of the BABAR detector.

Weak currents can be classified dependent on their *G*-parity S. Weinberg, Phys. Rev. 112 (1958).

- → G-parity is an extension of charge conjugation to include strong isospin multiplets as eigenstates: $\hat{G} = \hat{C}e^{i\pi\hat{I}_2}$
- Classify them as:
 - → First-class (FCC), with $PG(-1)^J = +1$ ($J^{PG} = 0^{++}, 0^{--}, 1^{+-}, 1^{-+}$),
 - → Second-class (SCC), with $PG(-1)^J = -1$ ($J^{PG} = 0^{+-}, 0^{-+}, 1^{++}, 1^{--}$).
- \square Previous searches for second-class currents in τ decays and nuclear β decay
 - \rightarrow No confirmed evidence of second-class currents.
- In the Standard Model, the decay constants associated with SCC are proportional to the u-d quark mass difference.

PREVIOUS RESULTS AND PREDICTIONS

- ⇒ The decay $\tau^- \to b_1^-(1235)\nu_\tau \to \pi^- \omega \nu_\tau$ would be a SCC with $J^{PG} = 1^{++}$ (axial-vector current).
- ⇒ The decay $\tau^- \to \pi^- \omega \nu_{\tau}$ also occurs through a FCC with $J^{PG} = 1^{-+}$ (vector current) $\mathcal{B}(\tau^- \to \pi^- \omega \nu_{\tau}) \sim 2\%$ (PDG).
- ➡ Limits are placed in terms of

 $\frac{N^{\pi\omega}(\text{non-vector})}{N^{\pi\omega}(\text{vector})}.$

Current limits are from

- → CLEO: < 6.4% at the 95% CL
 K. E. Edwards *et. al.*, Phys. Rev. D61, 072003 (2000),
- → ALEPH: < 8.6% at the 95% CL
 D. Buskulic *et. al.*, Zeit. Phys. C74, 263 (1997).

 \square No theoretical predictions for the level of SCC in this decay.

Data sample

rightarrow On-peak data from Run 1 to Run 5, $347 f b^{-1}$ (319 million $\tau^+ \tau^-$ pairs).

MC sample

- Generic $\tau^+ \tau^-$ MC includes:

$$\rightarrow \tau^- \rightarrow \pi^- \omega \nu_\tau$$
 with $J^{PG} = 1^{+-}$

→ $\tau^- \rightarrow \pi^- \pi^0 \omega \nu_{\tau}$ — main background.

ANALYSIS METHOD (1)

- Reconstruct $\tau^- \to \pi^- \omega \nu_{\tau}$, where $\omega \to \pi^+ \pi^- \pi^0$.
- Solution ⇒ Obtain the cos θ_{wπ} spectrum for $\tau^- \rightarrow \pi^- w \nu_\tau$ decays, where θ_{wπ} is defined as the angle between the π^- and the normal to the ω decay plane in the ω rest frame (Fig. 2).
- \square The FCC has $J^P = 1^-$ and L = 1.
- ⇒ The SCC has $J^P = 1^+$ and L = 0, 2 or $J^P = 0^-$ and L = 1.
- \square The different $J^P(L)$ combinations produce different angular distributions (Fig. 3).

Figure 2: Definition of the angle $\theta_{\omega\pi}$.

Figure 3: Angular distributions for different $J^P(L)$ states. Normalization of functions is arbitrary.

ANALYSIS METHOD (2)

Figure 4: $m(\pi^+\pi^-\pi^0)$ spectrum with one π^0 requirement with Signal and SideBand regions marked.

- rightarrow Obtain $\cos \theta_{\omega \pi}$ spectrum for data in signal region.
- Subtract contribution from combinatoric backgrounds using sidebands.
- Subtract contribution from $\tau^+ \tau^-$ and $q\overline{q}$ backgrounds using a combination of data and MC.
- rightarrow Correct for any variation in efficiency as a function of $\cos \theta_{\omega \pi}$.
- rightarrow Fit this final $\cos \theta_{\omega \pi}$ spectrum to obtain a SCC measurement.

SELECTION CRITERIA

Figure 5: Required topology.

- ⇒ Divide events into two hemispheres using thrust and require a 1-3 topology with at least one π^0 candidate (100 MeV/c² < $m(\gamma\gamma)$ <160 MeV/c²) on the 3-prong side.
- rightarrow Event level cuts (thrust, energy etc.) to select $\tau^+ \tau^-$ events.
- ➡ 1-prong charged track required to pass electron or muon selection criteria.
- ☞ 3-prong charged tracks required to pass pion selection criteria.

τ Reconstruction

- Bow Make two final samples, one for looking at the signal $\tau^- \to \pi^- \omega \nu_{\tau}$ decays, the other for studying the main background, $\tau^- \to \pi^- \pi^0 \omega \nu_{\tau}$. For the signal sample:
 - → Require only one π^0 in the signal hemisphere,
 - → No left over photons in the signal hemisphere that are not associated with a charged track,
 - → $m(\pi^{-}\pi^{+}\pi^{-}\pi^{0}) < 1.777 \text{ GeV/c}^{2}$.
- rightarrow For the $\tau^- \rightarrow \pi^- \pi^0 \omega \nu_{\tau}$ sample:
 - → Reconstruct two unique π^0 candidates (no common photons) in the signal hemisphere.

→
$$m(\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}) < 1.777 \text{ GeV/c}^{2}.$$

- Final selection rates are:
 - → 2.96% for $\tau^- \rightarrow \pi^- \omega \nu_\tau$ in one π^0 sample,
 - → 0.70% for $\tau^- \rightarrow \pi^- \pi^0 \omega \nu_{\tau}$ in one π^0 sample,
 - → 1.26% for $\tau^- \rightarrow \pi^- \pi^0 \omega \nu_{\tau}$ in two π^0 sample,

COMBINATORIC AND $q\overline{q}$ BACKGROUNDS

- Solution Use sidebands in data to model $\cos \theta_{\omega \pi}$ for combinatoric backgrounds in the signal region (Fig. 6).
- \square Use MC to model ω resonance in $q\overline{q}$ backgrounds:
 - → Compare data and MC events with $m(\pi^-\pi^+\pi^-\pi^0) > 2.1 \text{ GeV/c}^2$ to check the $q\bar{q}$ events have the correct normalization.
 - → Use sideband subtraction on the $q\bar{q}$ MC to obtain $\cos \theta_{\omega\pi}$ spectra for ω resonant events (Fig. 7).

Figure 6: $\cos \theta_{\omega \pi}$ spectrum for data sidebands.

23 September 2008

Search for Second-Class Currents in the Decay $\tau^-
ightarrow \pi^- \omega \nu_{ au}$

rightarrow Other τ decays that may be present in the final sample:

 $\rightarrow \tau^- \rightarrow \pi^- \pi^0 \omega \nu_{\tau}$

$$\rightarrow \tau^- \rightarrow K^- \omega \nu_{\tau}$$

$$ightarrow au^-
ightarrow \pi^0 \pi^0 \omega v_{ au}$$

$$\rightarrow \tau^- \rightarrow \pi^- \pi^+ \pi^- \omega \nu_{\tau}$$

- ⇒ Of these, $\tau^- \to \pi^- \pi^0 \omega \nu_{\tau}$ contributes the most events; of the 394,000 ω resonant events in the data, (~ 5%) from $\tau^- \to \pi^- \pi^0 \omega \nu_{\tau}$, compared to < 0.2% total for the others ($q\bar{q}$ is < 0.4%).
- $\Rightarrow \tau^- \rightarrow \pi^- \pi^0 \omega \nu_{\tau}$ events are not well modeled in the MC; both the $\cos \theta_{\omega \pi}$ spectra and the branching fraction are incorrect:
 - → The data and MC samples with the requirement of one additional π^0 are used to obtain the correct $\cos\theta$ spectrum for $\tau^- \rightarrow \pi^- \pi^0 \omega \nu_{\tau}$ decays.

$\tau^- \to \pi^- \pi^0 \omega \nu_{\tau}$ background (1)

- ⇒ Use $m(\pi^+\pi^-\pi^0)$ spectrum with an additional π^0 required (Fig. 8) to correct branching fraction in MC for $\tau^- \to \pi^-\pi^+\pi^-\pi^0\pi^0\nu_{\tau}$.
- ⇒ Use $\cos \theta_{\omega \pi}$ spectrum with an additional π^0 required (Fig. 9) to correct angular spectrum in MC for $\tau^- \to \pi^- \pi^+ \pi^- \pi^0 \pi^0 \nu_{\tau}$.

Figure 8: $m(\pi^+\pi^-\pi^0)$ for data and MC with $2\pi^0$ requirement.

Figure 9: $\cos \theta_{\omega \pi}$ spectra for data and MC with $2\pi^0$ requirement.

 $\tau^- \rightarrow \pi^- \pi^0 \omega \nu_{\tau}$ background (2)

Carry out sideband and background subtractions on the data with the additional π^0 requirement to obtain the correct $\cos \theta_{\omega \pi}$ spectrum for $\tau^- \to \pi^- \pi^0 \omega \nu_{\tau}$ decays, shown in Fig. 10.

Figure 10: Corrected $\cos \theta_{\omega \pi}$ spectrum for $\tau^- \to \pi^- \pi^0 \omega \nu_{\tau}$ decays.

23 September 2008

Search for Second-Class Currents in the Decay $\tau^-
ightarrow \pi^- \omega
u_{ au}$

EFFICIENCY

- The $\cos \theta_{\omega \pi}$ spectrum obtained after the backgrounds have been subtracted off is corrected for any efficiency variation as a function of $\cos \theta_{\omega \pi}$.
- Efficiency histogram is obtained from MC.

Figure 11: Efficiency as a function of $\cos \theta_{\omega \pi}$ from MC.

Figure 12: Data fit to find SCC contribution. $\chi^2/dof = 15.4/18$.

☞ The final fit uses the function

$$F(\cos\theta_{\omega\pi}) = N[(1-\epsilon)F^{FCC}(\cos\theta_{\omega\pi}) + \epsilon F^{SCC}_{L=0}(\cos\theta_{\omega\pi})],$$

where $F^{FCC}(x) \propto (1 - x^2)$ and $F^{SCC}_{L=0}(x) \propto (1)$, to find the second class current fraction, ϵ .

rightarrow The result from the fit is $\epsilon = (-5.5 \pm 5.8(\text{stat.})) \times 10^{-3}$.

23 September 2008

Search for Second-Class Currents in the Decay $\tau^- o \pi^- \omega \nu_\tau$

RESULTS AND CONCLUSIONS

- ⇒ Final result from fit for second-class current contribution is $\epsilon = (-5.5 \pm 5.8(\text{stat.})^{+0.8}_{-5.5}(\text{syst.})) \times 10^{-3}$.
- This sets limits on

$$\frac{N^{\omega\pi}(\text{non-vector})}{N^{\omega\pi}(\text{vector})} = \frac{\varepsilon}{1-\varepsilon}$$

of 0.69% at 90% C.L. and 0.85% at 95% CL (using a Bayesian scheme).

- ☞ Order of magnitude improvement over previous limits.
- rightarrow Equivalent to $\mathcal{B}(\tau^- \rightarrow \pi^- \omega \nu_{\tau} (\text{second-class})) < 1.3 \times 10^{-4} \text{ at } 90\% \text{ C.L.}$
- Analysis is presented in arXiv:0807.4900 [hep-ex].

BACKUP SLIDE(S)

Limits on $N^{\omega\pi}$ (non-vector)/ $N^{\omega\pi}$ (vector):

- [™] Bayesian limits are 0.69% (90% CL) and 0.85% (95% CL).
- ☞ Classical limits are 0.20% (90% CL) and 0.42% (95% CL).