Results on tau physics from HERA

Junpei Maeda
(Tokyo Institute of Technology)

On behalf of
the H1 and ZEUS collaborations

10th Int. Workshop on Tau Lepton Physics (TAU08)
September 22–25, 2008
Novosibirsk, Russia
HERA: World’s Only ep Collider

\[\sqrt{s} \sim 318 \text{ GeV} \]

\[e^+/e^- \quad 27.6 \text{ GeV} \]

\[p \quad 920 \text{ GeV} \]

HERA–I (1992~2000) : \(L \sim 120 \text{ pb}^{-1}/\text{exp.} \)

HERA–II (2002~2007) : \(L \sim 350 \text{ pb}^{-1}/\text{exp.} \)

- luminosity upgraded
- longitudinally polarized lepton beam
- detector upgrades

\(\rightarrow 0.5 \text{ fb}^{-1} \) data for each experiment!

HERA laid to rest on 30 June 2007.

HERA delivered
H1 and ZEUS detector

- **Liquid Argon Calorimeter**
 - fine granularity, excellent tracking
 - $\sigma(E)/E = 12\%/\sqrt{E}$ for electrons
 - $\sigma(E)/E = 50\%/\sqrt{E}$ for hadrons

- **Uranium–scintillator Calorimeter**
 - good hadronic energy resolution
 - $\sigma(E)/E = 18\%/\sqrt{E}$ for electrons
 - $\sigma(E)/E = 35\%/\sqrt{E}$ for hadrons
Tau Production at HERA

Tau lepton production is a rare process at HERA!

- $\tau^+\tau^-$ pair–production events
- Isolated τ lepton with missing transverse momentum (P_T^{miss}) events
- Double charged Higgs Search
- Lepton Flavour Violation

Tau lepton is important in exotic search.
Tau Production at HERA

- $\tau^+\tau^-$ pair-production events
 - Leptonic channel ($\tau^+\tau^- \rightarrow e^+\mu^+$)
 - Semi-leptonic channel ($\tau^+\tau^- \rightarrow e^{\pm}\text{had}^\mp, \mu^{\pm}\text{had}^\mp$)
 - Hadronic channel ($\tau^+\tau^- \rightarrow \text{had}^{\pm}\text{had}^\mp$)
- Isolated τ lepton with missing transverse momentum (P_T^{miss}) events
- Double charged Higgs Search
- Lepton Flavour Violation
τ⁺τ⁻ pair–production (only leptonic) @ ZEUS

\[ep \rightarrow \tau^+\tau^- (ep) \]

HERA–II e–p data \(L=135 \text{ pb}^{-1} \)

searched for \(\tau^+\tau^- \rightarrow e^\pm \mu^\mp \)

(leptonic decay)

selection criteria

<table>
<thead>
<tr>
<th>electron</th>
<th>muon</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_e > 4 \text{ GeV})</td>
<td>(p_{T\mu} > 2 \text{ GeV})</td>
</tr>
<tr>
<td>(\theta_e < 2.6 \text{ rad})</td>
<td>0.6 rad (\lesssim \theta_{\mu} \lesssim 2.8 \text{ rad})</td>
</tr>
</tbody>
</table>

(Acceptance of central tracking detector)

elastic requirements

– Number of tracks in event : 1~3
– No energy deposit in ”forward” calorimeter region

Data

<table>
<thead>
<tr>
<th>(\tau^+\tau^-)</th>
<th>(\mu^+\mu^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(2.0 \pm 0.8)</td>
</tr>
</tbody>
</table>

\[\rightarrow \text{Data agree with SM expectation.} \]
\(\tau^+\tau^- \) pair–production (incl. hadronic) @ ZEUS

\[ep \rightarrow \tau^+\tau^- (ep) \]

HERA–II e\(^{\pm}\)p data \(L = 364 \text{ pb}^{-1} \)

To study hadronically–decayed \(\tau \) identification, searched for:

\[\tau^+\tau^- \rightarrow \begin{cases} e^\pm + h^\pm + \nu_\tau + \cdots & (\text{BR} : \sim 23\%) \\ h^\pm + h^\pm + \nu_\tau + \cdots & (\text{BR} : \sim 42\%) \end{cases} \]

more statistics than \(\text{e}\mu \) channel (~6%)

Hadrons from \(\tau \) decay is identified by ”jet”.

The most difficult thing: separate a \(\tau \)–jet from quark/gluon induced jets

There are many kinds of large background…

e.g.) diffractive–photoproduction

\[\sigma \sim 300 \text{ nb} \ (2 \text{ jets w/ } E_T > 4 \text{ GeV}) \]

<table>
<thead>
<tr>
<th>electron</th>
<th>jet</th>
</tr>
</thead>
</table>
| \(p_T^e > 5 \text{ GeV} \) & \(-2 < \eta_e < 2 \)
matched track (\(p_T^\text{track} > 3 \text{ GeV} \)) | \(p_T^{\text{jet}} > 5 \text{ GeV} \) & \(-2 < \eta^{\text{jet}} < 2 \)
at least one associated tracks, electron rejection cut |

elastic requirements : No energy deposit in forward calorimeter region, Low track multiplicity
τ–jet ID for $\tau^+\tau^−$ pair–production @ ZEUS

τ–ID using PDE Range Searching (discriminant)

• Generalization of one–dimensional PDE approach to n dimensions
 – Counts number of signal and background events (training sample) in "vicinity" V of the test event
 – Implemented in TMVA

\[
D(i_{\text{event}}, V) = \frac{\text{#signal events in } V}{\text{#all signal events}} = \frac{n_s(i_{\text{event}}, V) / N_s}{n_s(i_{\text{event}}, V) / N_s + n_b(i_{\text{event}}, V) / N_b}
\]

– 6 variables are inputted to discriminant, then evaluate discrimination value. (next slide)
τ–jet ID for \(\tau^+\tau^- \) pair–production @ ZEUS

6 variables are prepared for discriminant.

- **Rmean, Rrms**: 1\(^{\text{st}}\) and 2\(^{\text{nd}}\) moment of radial extension

 \[
 Rmean = \langle R \rangle = \frac{\sum_i E_i \cdot R_i}{\sum_i E_i}, \quad Rrms = \sqrt{\frac{\sum_i E_i \cdot (R - \langle R \rangle)^2}{\sum_i E_i}}
 \]

- **Mass**: invariant mass of clustered CAL cells

 \[
 Mass = \sqrt{\left(\sum_i E_i\right)^2 - \left(\sum_i p_{i,x}\right)^2 - \left(\sum_i p_{i,y}\right)^2 - \left(\sum_i p_{i,z}\right)^2}
 \]

- **Lmean**: 1\(^{\text{st}}\) moment of longitudinal extension

 \[
 Lmean = \langle L \rangle = \frac{\sum_i E_i \cdot \cos \alpha_i}{\sum_i E_i}
 \]

- **Rtrak**: The sum of distance between the jet axis and the tracks associated with the jet

 \[
 Rtrak = \sum_{i \in Ntrk} \left(\Delta \eta_i^2 + \Delta \phi_i^2\right)
 \]

- **Nsubj**: Number of subjets \((y_{\text{cut}}=5 \times 10^{-4})\)

ZEUS–prel–08–009

25 Sep 2008

J. Maeda - Results on tau physics from HERA
Results of $\tau^+\tau^-$ pair-production @ ZEUS

$ep \rightarrow \tau^+\tau^- (ep)$ HERA–II $e^\pm p$ data $L=364$ pb$^{-1}$

Large uncertainty due to

- MC statistics
- PHP scale normalization

Discriminant threshold is given for each topology.

Data are in reasonable agreement with SM expectation.
The highest $M_{\tau\tau}^{\text{visible}}$ event ($M_{\tau\tau}^{\text{visible}}=40$ GeV)
\(\tau^+ \tau^- \) pair–production \(\oplus \) H1

\[ep \rightarrow \tau^+ \tau^- (ep) \] HERA–I e\(^\pm \)p data \(L=106 \) pb\(^{-1}\)

look for all topologies to be able to identify \(\tau^+ \tau^- \) events

- leptonic(e\(\mu \)), semi–leptonic(e–jet, \(\mu \)–jet), hadronic(jet–jet) decay
- look at the jets from low \(P_T \)
 - exactly required 1 or 3–tracks in the jet
 - using neural network to identify \(\tau \)–jet
 - the first measurement of \(\tau^+ \tau^- \) cross section at \(ep \)–collider

Neural Network based tau–ID

- To distinguish hadronic 1–prong, 3–prong \(\tau \) decays from quark/gluon jets \((L_{1\text–prong}, L_{3\text–prong}) \)
- To distinguish hadronic 1–prong \(\tau \) decays from misidentified electrons/muons \((L_{\text{veto} e}, L_{\text{veto} \mu}) \)
 - multiplicities of neutral clusters / invariant mass / number of tracks / 1st moment of energy deposits…

<table>
<thead>
<tr>
<th>electron</th>
<th>muon</th>
<th>jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_T^e > 3) GeV</td>
<td>(p_T^\mu > 2) GeV</td>
<td>(p_T^{\text{jet}} > 2) GeV</td>
</tr>
<tr>
<td>(L_{1\text–prong} \parallel L_{3\text–prong} > 0.75)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two isolated e or \(\mu \) or jets of opposite charges

signal efficiency = 50%

misidentified probability = 0.5\% (4\%)

elastic requirements: No additional tracks/clusters, No activity in forward regions

NC/di–e/di–\(\mu \) rejection: \(E–P_z < 50 \) GeV, \(L_{\text{veto} e} > 0.75, L_{\text{veto} \mu} > 0.75 \)
Results of $\tau^+\tau^-$ pair–production @ H1

$ep \rightarrow \tau^+\tau^- (ep)$ \hspace{1cm} HERA–I $e^\pm p$ data $L=106$ pb$^{-1}$

Phase space definition

- Elastic events with two τ leptons of
 \begin{align*}
 & p_T^\tau > 2 \text{ GeV} \\
 & 20^\circ < \theta_\tau < 140^\circ
 \end{align*}

(acceptance $\approx 1\%$)

Purest final state

- First measurement at HERA!!

First measurement at HERA!!

$\tau^+\tau^-$ Results

<table>
<thead>
<tr>
<th>Decay Channel</th>
<th>Leptonic</th>
<th>Semi–leptonic</th>
<th>Hadronic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e, μ</td>
<td>$e\tau$-jet</td>
<td>$\mu\tau$-jet</td>
<td>τ-jet τ-jet</td>
</tr>
<tr>
<td>H1 Data</td>
<td>7</td>
<td>2</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>SM $\tau^+\tau^-$</td>
<td>2.9 \pm 0.4</td>
<td>6.3 \pm 0.9</td>
<td>7.0 \pm 1.3</td>
<td>11.0 \pm 2.0</td>
</tr>
<tr>
<td>$\pi^0\nu$</td>
<td>56%</td>
<td>47%</td>
<td>85%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Results

- $\sigma_{\text{measured}} = 13.6 \pm 4.4 \pm 3.7$ pb
- $\sigma_{\text{theory}} = 11.2 \pm 0.3$ pb (GRAPE)

Good agreement with SM expectation!

25 Sep 2008

J.Maeda - Results on tau physics from HERA
\(\tau^+ \tau^- \) candidate @ H1

H1

TAU PAIR CANDIDATE

\[e^+ p \rightarrow e^+ \tau^- \tau^+ p \]

\[\mu^- \bar{\nu}_\mu \nu_\tau \quad h^+ h^+ h^- \quad \bar{\nu}_\tau \]
Tau Production at HERA

• $\tau^+\tau^-$ pair–production events

• Isolated τ lepton with missing transverse momentum (P_T^{miss}) events

• Double charged Higgs Search

• Lepton Flavour Violation
Isolated tau leptons + P_T^{miss} physics

$$ep \rightarrow W(eX) \rightarrow \tau\nu$$

Rare process, but sensitive to new physics
- SM signal is single W boson production with subsequent decay $W \rightarrow \tau\nu$.
- Main background is CC events with narrow jets.
- A complement to isolated $e(\mu) + P_T^{\text{miss}}$ analysis
 (There is a slight excess for $e(\mu)$ channel at H1.)

An excess at high p_T^X could be a sign of new physics.
 \rightarrow single top production via FCNC etc.

$\sigma \times \text{BR} \sim 0.1\text{pb}$

> 12 GeV (H1)
> 20 GeV (ZEUS)

Additional high p_T jet
τ–ID for Isolated $\tau + P_T^{\text{miss}}$ analysis @ ZEUS

HERA–I e^+p data $L=130 \text{ pb}^{-1}$

had τ–ID

τ–ID using PDE Range Searching

– Same method as $\tau^+\tau^-$ analysis. (see above)

– Variable set is different.

$$\log(R_{trk}) \rightarrow -\log(L_{\text{rms}})$$

L_{rms}: 2nd moment of longitudinal extension

$$L_{\text{rms}} = \sqrt{\frac{\sum_i E_i (L_{\text{mean}} - \cos \alpha_i)^2}{\sum_i E_i}}$$

required $D > 0.95$

Good separation of signal from background!
Result of isolated $\tau + P_T^{\text{miss}}$ @ ZEUS

Interesting $\tau + P_T^{\text{miss}}$ events at large P_T^X are observed at ZEUS!

<table>
<thead>
<tr>
<th>ZEUS 1994–2000 e±p</th>
<th>ZEUS data</th>
<th>SM expectation</th>
<th>$W \rightarrow \tau\nu$ Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>3</td>
<td>0.40 ± 0.12</td>
<td>43%</td>
</tr>
<tr>
<td>$P_T^{\text{had}} > 25 \text{ GeV}$</td>
<td>2</td>
<td>0.20 ± 0.05</td>
<td>49%</td>
</tr>
<tr>
<td>$P_T^{\text{had}} > 40 \text{ GeV}$</td>
<td>1</td>
<td>0.07 ± 0.01</td>
<td>71%</td>
</tr>
</tbody>
</table>

New physics signal
Isolated tau leptons + P_T^{miss} @ H1

$ep \rightarrow W(eX) \rightarrow \tau \nu$

- ZEUS HERA–I result has a slight excess for $\tau + P_T^{\text{miss}}$ events.
- H1 analyzed all HERA data. \rightarrow 471 pb$^{-1}$

Cut–based tau–ID

- look for jet in LAr calorimeter (cone radius = 1.0)
 $P_T^{\text{jet}} > 7$ GeV, $20^\circ < \theta^{\text{jet}} < 120^\circ$

- Isolation: Distance to other e, μ, jet in $\eta–\phi > 1.0$

Radial shower shape ("Jet radius") < 0.12

$$R_{\text{jet}} = \frac{1}{E_{\text{jet}}} \sum_h E_h \sqrt{\Delta \eta(jet, h)^2 + \Delta \phi(jet, h)^2}$$

- $N_{\text{jet}}^{\text{tracks}} = 1$ (only 1–prong jet)

\rightarrow misidentification probability : < 1%

Data in good agreement with SM prediction!
τ + P_T^{miss} candidate event

H1 τ + P_T^{miss} candidate with large P_T^X

P_{miss}^{X} = 59 \text{ GeV} \quad P_T^{\tau} = 14 \text{ GeV} \quad P_T^{X} = 51 \text{ GeV}
Tau Production at HERA

• $\tau^+\tau^-$ pair-production events

• Isolated τ lepton with missing transverse momentum (P_T^{miss}) events

• Double charged Higgs Search

• Lepton Flavour Violation
Doubly–charged Higgs search @ H1

searched for H^{++} bosons using HERA–I e^+p data $L=88\text{ pb}^{-1}$

\[H^{++} \rightarrow e^+\tau^+ \] final selection

<table>
<thead>
<tr>
<th>Event class</th>
<th>N_{obs}</th>
<th>N_{bkg}</th>
<th>Signal fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e\mu$</td>
<td>0</td>
<td>0.27 ± 0.02</td>
<td>6 %</td>
</tr>
<tr>
<td>eh</td>
<td>1</td>
<td>1.66 ± 0.48</td>
<td>12 %</td>
</tr>
<tr>
<td>ee</td>
<td>0</td>
<td>0.14 ± 0.04</td>
<td>7 %</td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>2.07 ± 0.54</td>
<td>25 %</td>
</tr>
</tbody>
</table>

SM signal efficiency

CDF ($M_H > 114$ GeV)
(c.f. hep-ex/0808.2161)

No evidence for $H^{++} \rightarrow e^+\tau^+$ decays
Lepton Flavour Violation @ H1/ZEUS

searched for Lepton Flavour Violation

\[e \rightarrow e(v) \]

\[\gamma/Z(W^\pm) \]

\[q \rightarrow q \]

SM DIS

s–channel

Leptoquark (LQ)s couple to both quarks and leptons.

\[\tau \rightarrow X + e \]

had \(\tau \)-ID

Neural Network based tau–ID

80% signal efficiency

95% quark/gluon induced jet rejection

\[N_{\text{events}} \]

\[\tau \]–ID using PDE Range Searching

same discriminant as in ZEUS \(\tau + P_T \) miss search

\[\tau \]

\[\lambda_{eq} \]

\[\lambda_{(\tau)} \]

\[q_{\alpha} \]

\[q_{\beta} \]

\[LQ \]

\[\tau \rightarrow X + e \]

REQUIRED:

\[P_T^{\text{jet1}} > 25 \text{GeV}, P_T^{\text{jet2}} > 15 \text{GeV} \]

exactly 1 or 3 tracks in the jet

\[D_{NN} > 0.8 \]

25 Sep 2008

J. Maeda - Results on tau physics from HERA

Limits for LQs in the τ channel @ H1/ZEUS

No significant deviation from SM found. Limits were set on coupling to LQ leading to Lepton Flavour Violation.

\[\begin{array}{c|c|c}
\text{H1} & \text{e}^+\text{p: }13.7 \text{ pb}^{-1}, \text{e}^-\text{p: }66.5 \text{ pb}^{-1} \\
\hline
\text{Data} & \text{SM MC} \\
\hline
\text{ep} \rightarrow \tau X & \text{0} & 0.75 \pm 0.21 \\
\text{e}^+\text{p} & \text{1} & 4.90 \pm 0.85 \\
\end{array} \]

HERA–I e^\pmp data $L=80.2$ pb$^{-1}$

No evidence for LFV

\[\begin{array}{c|c}
\text{Data} & 0 \\
\text{SM} & 2.3 \pm 0.5 \\
\text{sel. eff.} & 22\sim30\% \left(M_{LQ} < \sqrt{s} \right) \\
\end{array} \]

HERA–I e^\pmp data $L=130$ pb$^{-1}$

No candidate was found. Limits on LQ were set.

\[\begin{array}{c|c}
\text{Data} & 0 \\
\text{No evidence for LFV} & \text{No evidence for LFV} \\
\end{array} \]
Summary

• Only a few taus have been seen at HERA.
 – Detecting taus at HERA is a challenging task.
• They are an important signature for new physics.
• Many tools for the identification of hadronically–decayed taus have been developed by H1 and ZEUS.

• Results for $\tau^+\tau^−$ pair–production are in agreement with SM prediction (H1/ZEUS).
• New result of isolated $\tau + P_T^{miss}$ from H1 is in agreement with SM expectation.
 – ZEUS result using HERA–I data has a slight excess.
• No evidence for $H^{++}\rightarrow e^+\tau^+$ decays (H1) and lepton flavour violation (H1/ZEUS)

• HERA data taking ended on June 30 2007 after 15 years successful operation:
 – Each experiment has collected \sim500 pb$^{-1}$ data.
 – Tau analyses have not finalized yet, still more to come for the next years!
backup slides
Background control sample for $\tau^+\tau^-$ pair–production @ H1

$e^+ e^-$

$\mu^+ \mu^-$

γp

$\nu\bar{\nu}$

Jet Candidates

1-prong

3-prong

H1 Data

All SM Processes

$\gamma\gamma \rightarrow \tau^+\tau^-$
Event selection for isolated tau + \(P_T^{\text{miss}} \) @ H1

CC selection

\(P_T^{\text{miss}} > 12 \text{ GeV} \)

the ratio of the anti-parallel and parallel components of the hadronic \(P_T \)

Tau–jet selection (cut–based)

look for jet in LAr calorimeter (cone radius = 1.0)

\(P_T^{\text{jet}} > 7 \text{ GeV}, \, 20^\circ < \theta^{\text{jet}} < 120^\circ \)

Isolation : Distance to other e, \(\mu \), jet in \(\eta–\phi > 1.0 \)

Radial shower shape ("Jet radius")

\[
R_{\text{jet}} = \frac{1}{E_{\text{jet}}} \sum_h E_h \sqrt{\Delta \eta(jet,h)^2 + \Delta \phi(jet,h)^2}
\]

only 1–prong jet → (misidentification probability : < 1%)
Isolated tau leptons + P_T^{miss} @ H1

$\tau + P_T^{\text{miss}}$ events at HERA I + II (e$^+$p, 287 pb$^{-1}$)

<table>
<thead>
<tr>
<th>e^+p</th>
<th>Full Sample</th>
<th>$P_T^X > 25$ GeV</th>
<th>H1 Data</th>
<th>SM Expectation</th>
<th>SM Signal $W \rightarrow \tau \nu$</th>
<th>Other SM Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>287 pb$^{-1}$</td>
<td>10</td>
<td>10.8 ± 1.8</td>
<td>1.6 ± 0.3</td>
<td>9.2 ± 1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>184 pb$^{-1}$</td>
<td>10</td>
<td>8.6 ± 1.5</td>
<td>1.0 ± 0.2</td>
<td>7.6 ± 1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>471 pb$^{-1}$</td>
<td>20</td>
<td>19.5 ± 3.2</td>
<td>2.7 ± 0.4</td>
<td>16.8 ± 2.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\tau + P_T^{\text{miss}}$ events at HERA I + II (e$^-$p, 184 pb$^{-1}$)

<table>
<thead>
<tr>
<th>e^-p</th>
<th>Full Sample</th>
<th>$P_T^X > 25$ GeV</th>
<th>H1 Data</th>
<th>SM Expectation</th>
<th>SM Signal $W \rightarrow \tau \nu$</th>
<th>Other SM Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>184 pb$^{-1}$</td>
<td>1</td>
<td>0.47 ± 0.07</td>
<td>0.25 ± 0.04</td>
<td>0.22 ± 0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H1 Data (prelim.) $N_{\text{Data}} = 10$

All SM $N_{\text{SM}} = 10.8 ± 1.8$

All SM $N_{\text{SM}} = 8.6 ± 1.5$

25 Sep 2008 J.Maeda - Results on tau physics from HERA
Lepton Flavour Violation @ ZEUS

ZEUS

(a) -log(R_{mean})

(b) -log(R_{rms})

(c) -log(1-L_{mean})

(d) -log(L_{rms})

(e) N_{subj}

(f) M_{jet} (GeV)

ZEUS e^+p 94-00
Background MC
LFV τ M_{LO}=240 GeV

- Background MC
Limits for LQs in the τ channel @ H1/ZEUS

HERA–I $e^\pm p$ data $L=80.2$ pb$^{-1}$

No significant deviation from SM found.

Limits were set on coupling to LQ leading to Lepton Flavour Violation.

HERA–I $e^\pm p$ data $L=130$ pb$^{-1}$

No candidate was found.

Limits on LQ were set.

→ No evidence for LFV